The Endoscopic Incidentaloma: What to Tell Your Patient with Unexpected Endoscopic Findings: Gastric Intestinal Metaplasia, Silent Ileitis, Carcinoid

David Greenwald, MD
Montefiore Medical Center
Albert Einstein College of Medicine
ACG Western Regional Course
January 2015

Unexpected Findings at Endoscopy

• Foreign Bodies
• Masses
• Ulcers
• Varices
• Parasites
• So much more....
Unexpected Findings at Endoscopy

- Gastric intestinal metaplasia
- Silent ileitis
- Carcinoid

Gastric Intestinal Metaplasia

- Intermediate precancerous gastric lesion
- Chronic gastritis → Atrophy → Dysplasia → Adenocarcinoma
- While risk of gastric cancer is increased, absolute risk is low
- Subsets of patients with IM may be at higher risk for progression
Gastric Intestinal Metaplasia

Definition:
Replacement of the surface, glandular and foveolar epithelium in the oxyntic or antral mucosa by intestinal epithelium

Subtypes

- Complete intestinal metaplasia
 - Presence of small intestinal type mucosa
 - Goblet cells
 - Brush border
 - Eosinophilic enterocytes

- Incomplete Intestinal metaplasia
 - Presence of colonic epithelium
 - Multiple, irregular mucin droplets of variable size in the cytoplasm
 - Absence of a brush border
Gastric Intestinal Metaplasia

• Subtypes
 – Limited intestinal metaplasia
 • Confined to one area of the stomach
 – Extensive intestinal metaplasia
 • Involves at least two areas of the stomach
 – Antrum
 – Angularis
 – Body

Gastric Intestinal Metaplasia: Epidemiology

• Incidence varies worldwide
• Increases with age
• Prevalence seems correlated with incidence of gastric cancer
• United States
 – Overall prevalence 19%
 • Caucasians 13%
 • Hispanic/Blacks 50%
• Netherlands
 – Overall prevalence 7%
Gastric IM:
Risk Factors

- Similar to those for gastric cancer
 - *H. pylori* infection
 - High salt intake
 - Smoking
 - Alcohol consumption
 - Chronic bile reflux
- Multistage model for gastric cancer
 - Host genotype and dietary and environmental factors predispose to early pangastric mucosal inflammation
 - Leads to gastric atrophy, IM, dysplasia and then adenocarcinoma

Gastric IM:
Clinical Features

- No symptoms
- Often found incidentally at EGD
- May be associated with gastric achlorhydria
 - Which may lead to SIBO
 - Bloating, flatulence, diarrhea, abdominal discomfort
- Endoscopic appearance
 - Non-specific
 - Sometimes has rough or villous appearance
 - Sometimes thin white mucosal deposits
- Diagnosis
 - Biopsy
Gastric IM:
Evaluating for subtype

- Important to determine
- Histologic subtype
 - Complete vs. Incomplete
- Extent
 - Limited versus Extensive
- Aids in determination of risk of gastric adenocarcinoma and guides surveillance

This requires gastric biopsy mapping
At least 5 non-targeted gastric biopsies

Natural History

- Metaplastic foci often first appear at antrum/body junction
- Foci enlarge and coalesce
 - Extending into antrum and body
- Atrophic and metaplastic glands replace original glands
 - Normal gastric secretions decrease
- Hypochlorhydria and high circulating levels of gastrin
- Initial metaplastic glands resemble those of small intestine
 - Type 1
- More advanced changes are similar to colonic mucosa
 - Type II, or colonic metaplasia
- Small foci of dysplasia may develop in areas of IM
Cancer risk

- Gastric IM associated with increased risk for cancer
 - Absolute risk is low
- Progression from IM to cancer varies from 0%-10% per year
 - Influenced by virulence of *H. pylori*, environmental factors and host genetics
- Netherlands
 - 61000 individuals with gastric IM
 - Incidence of gastric cancer in 5 years was 0.25%
- More likely to progress with incomplete intestinal metaplasia or extensive metaplasia
 - Spain
 - 478 patients
 - Presence of incomplete intestinal metaplasia 11 fold increase in risk of gastric cancer
 - Presence of family history of gastric cancer associated with 6 fold increase in risk of gastric cancer

Management

Goals
- Decrease risk of gastric cancer in patients with IM by screening and eradication of *H. pylori*
 - Eradication of *H. pylori* appears to reverse histologic changes in many patients with non-atrophic gastritis and atrophic gastritis
 - Eradication of HP does not reverse IM
 - May slow progression to cancer
 - Progression of metaplasia and dysplasia are associated with a decreased burden of *H. pylori* all by themselves
 - *H. pylori* testing with stool antigen or UBT recommended
Management

Goals

– Surveillance for gastric cancer recommended
 • For those with extensive IM
 • For those with incomplete intestinal metaplasia
 • Standard EGD with white light and gastric biopsy mapping
 – Every 2-3 years
 • Generally consistent with ESGE Guidelines (2012)
 – Surveillance may lead to early detection and improved survival
 • No recommendation for surveillance in patients with gastric IM
 • Those at increased risk for gastric cancer (ethnic background, family history) may benefit from screening
 – No interval suggested

• Upper endoscopy with mapping
 – Minimum of five biopsies from body and antrum
 – Additional biopsies from the angularis
 – Separate jars
 – Additional biopsies for endoscopically abnormal areas

• Gastric biopsy mapping essential
 – White light endoscopy does not differentiate atrophic gastritis from IM and more advanced dysplasia
Other Imaging

- **Magnification chromoendoscopy**
 - Generally indigo carmine
 - Inconsistent results
- **NBI**
 - May be useful in a trained individual to detect IM
- **Confocal endomicroscopy**
 - Useful to detect early gastric cancer
 - No data in studies to look for gastric IM

Summary

- Gastric IM characterized by epithelial changes
 - Divided into complete IM and incomplete IM
 - Divided into limited and extensive
- Overall risk of progression to cancer is low in areas of low gastric cancer prevalence (2.5 per 1000 person years)
 - Much higher in people with incomplete or extensive IM
- IM causes no symptoms
 - Detected incidentally on most occasions
Summary

• Diagnosis is made on biopsies
• Evaluation of subtype and extent of metaplasia requires gastric biopsy mapping
• Individuals with extensive or incomplete IM
 – Surveillance EGD and biopsy mapping every 2-3 years
• High risk individuals without incomplete or extensive metaplasia
 – Decision to perform endoscopic surveillance must be individualized
• *H. pylori* should be eradicated

Ileitis

• Crohn’s
• Others
Endoscopic Findings in Crohn’s Disease

- **Aphthous ulcers**
 - Typically small, discrete
 - Deeper ulcers involve entire thickness of wall

- **Cobblestoning**
 - Serpiginous and linear ulcers along longitudinal axis
 - Ulcers are the cracks
 - Normal or inflamed tissue are the stones

- **Skip lesions**
 - Adjacent areas are normal

Crohn’s Mimicry

- **Tuberculosis of the terminal ileum**
 - Narrowed lumen
 - Nodularity
 - Diagnosed by
 - Caseating granulomas (may be deep to biopsies)
 - Positive culture
 - AFB on endoscopic biopsies

- **Other endoscopic features**
 - Grouped ulcers, nodules
 - Destruction of ileocecal valve
Crohn’s Mimicry

Bacteria that can cause ileitis

– Yersinia enterocolitica
– Campylobacter
– Shigella
– Salmonella

Crohn’s mimicry

• Pseudomembranous colitis
 – Small groups of pseudomembranes may look grossly like the aphthous ulcers in Crohn's disease
 – These lesions are typically in the colon
 • On top of mucosa
 • Do not result in ulceration of the underlying tissue
More ileitis

NSAIDs
- NSAIDs associated with a variety of pathologic changes in the GI tract
- Consider NSAID induced disease in small bowel ulcerations or inflammatory changes

Does ileoscopy matter??

- Ileal intubation rates
 - 80%-97%
- Not all suspected to be Crohn’s disease is Crohn’s disease
 - 110 patients with suspected CD on barium exam
 - 48 (or 44%) had a final diagnosis of Crohn’s disease
- Biopsies are critical to establishing diagnoses
 - Target abnormal appearing tissue, polyps, masses
 - Brushings and stool samples may also be helpful
 - Highest diagnostic yield
 - Micro-ulcers (less than 5 mm)
 - Edges of larger ulcers
 - Granulomas to support the diagnosis of CD
 - Only found in 5%-24% of biopsy specimens
Carcinoid Tumors

Carcinoid:
- Well differentiated neuroendocrine tumors
 - Originate in the GI tract, lungs or kidneys/ovaries
- Origin of name
 - Morphologically different from more common GI tract adenocarcinomas
 - Generally less aggressive
- In GI tract
 - Well differentiated neuroendocrine tumors of the luminal GI tract are called carcinoids
 - Those in the pancreas usually referred to as pancreatic neuroendocrine tumors
- Generally rare
 - Increased incidence recently due to improved detection

Carcinoid syndrome

Constellation of symptoms
- Mediated by various humoral factors that are elaborated by tumors
- Flushing and diarrhea
- Generally occurs with metastatic carcinoids originating in the small bowel
Distribution of Carcinoid Tumors

• SEER database (1973-1997)
• GI tract 55%
• Bronco-pulmonary 30%
• In GI tract
 – Small intestine 45% (most common in ileum)
 – Rectum 20%
 – Appendix 16%
 – Colon 11%
 – Stomach 7%

• Since 2000 (screening colonoscopy)
 – Incidence of rectal carcinoids greatly increased

Carcinoids:

Foregut tumors

• Stomach and lung
• 3 types in stomach
• Type 1
 – 70-80% of all gastric carcinoids
 – Associated with chronic atrophic gastritis and pernicious anemia
 – More common in woman
 – Typically
 • Smaller than 1 cm
 • Multiple
 • Polypoid lesions with central ulceration
 – Derived from ECL cells (stimulated by high gastrin levels)
 – Usually diagnosed in patients in their 60s and 70s undergoing EGD for anemia or abdominal pain
 – Generally benign and indolent
 – More likely to be aggressive if greater than 2 cm
Carcinoids:
Foregut tumors

Stomach

- Type 2
 - Associated with Zollinger–Ellison syndrome
 - Associated with MEN-1
 - Accounts for 5% of gastric carcinoids
 - Arises from ECL cells
 - Stimulated by gastrin
 - Hypergastrinemia produced by a gastrinoma in type 2
 - Often multifocal, usually indolent

- Type 3
 - Sporadic
 - Occurs in absence of atrophic gastritis or MEN 1
 - 20% of gastric carcinoids
 - Most aggressive,
 - Mets to liver in up to 65%

Carcinoids:
Midgut tumors

Jejunum and ileum

- Increasingly detected at endoscopy and capsule endoscopy
- Since 2000, carcinoids more common in small bowel than adenocarcinoma
- Patients typically in 60s or 70s
- Small bowel carcinoids arise from intraepithelial endocrine cells
- Most commonly located within 60 cm of ileocecal valve;
 - May arise from Meckel's diverticulum
- 25% of patients have more than one
- Most are asymptomatic
 - Found incidentally
- May present as intermittent obstruction
- If symptomatic,
 - Abdominal pain may be due to intussusception, mechanical effect of tumor or mesenteric ischemia
Carcinoids:
Appendiceal tumors

- Most common neoplasm of the appendix
- Discovered in 1/300 appendectomies
 - Usually at the tip of the appendix
- Detected in patients in 40s and 50s
- Most patients asymptomatic
 - Appendiceal carcinoids are submucosal
- Symptoms occur when tumors are large
 - 10% are located at base and can cause appendicitis

Carcinoids:
Hindgut tumors

- Transverse, descending colon and rectum
- Typically non-secretory
- Never associated with carcinoid syndrome, even when metastatic
Colonic Carcinoids

- Typically detected in patients in their 70s
 - During evaluation colonoscopically for diarrhea, abdominal pain, anemia or weight loss
- Incidence of functioning tumors very low
 - Approximately 3%
- Most in right colon (most in cecum)
- No symptoms until these get very large (5 cm or larger)

Rectal Carcinoids

- Generally found incidentally
 - Asymptomatic
- Most commonly diagnosed in people in their 60s
- Rarely can cause
 - Rectal bleeding
 - Change in bowel habits
 - Pain
- Non-secretory in general
 - Therefore, no chance of carcinoid syndrome
Rectal Carcinoids

- Majority are localized at diagnosis (75%-85%)
- Size correlates with likelihood of metastasis
- Size
 - <1 cm rarely metastatic
 - 1-2 cm 6% metastatic
 - >2 cm 24%, generally mets to liver
- Other poor prognostic features
 - Deep invasion (to muscularis propria or deeper)
 - Lymphovascular invasion
 - High mitotic rate

Management

Gastric carcinoids
 - Type 1 and 2
 - Smaller than 1-2 cm
 - Endoscopic resection
 - More aggressive or numerous
 - Antrectomy
 - Type 3
 - Partial or total gastrectomy with local lymph node resection
Management

Small bowel carcinoids
- Resection of involved small bowel segment and mesentery
- Ampulla of Vater lesions may be more aggressive

Management

Appendiceal carcinoids
- Appendectomy for carcinoids less than 2 cm
- Right hemicolectomy for carcinoids greater than 2 cm and with mesoappendiceal invasion
Management

Colonic carcinoids
- Most non-metastatic lesions managed with
 - Formal partial colectomy and regional lymphadenectomy

Management

• Rectal carcinoids
 - Smaller than 1 cm and confined to mucosa or submucosa
 - Local endoscopic excision
 - 1-2 cm
 - Controversial
 - Must be individualized based on size, mitotic rate, and lymphovascular invasion
 - >2 cm or those that invade past muscularis propria or have regional lymph node mets
 - Surgery (low anterior resection or abdominal perineal resection)
Post-treatment Surveillance

- Gastric carcinoids <2 cm
 - EGD every 6-12 months for 3 years and then annually
- Appendiceal carcinoids <2 cm
 - No surveillance
- Rectal carcinoids <1 cm
 - No surveillance
- Rectal carcinoids 1-2 cm
 - Surveillance proctoscopy at 6 and 12 months