Learning Objectives

IMAGING IN IBD: THE MENU [25 MIN]

- Background
- CT-Enterography
- MR-Enterography
- Future Directions
 - PET/CT-MRI Enterography
 - Dual Energy MDCT
- MRI Perianal disease
- Conclusions

SB Imaging in IBD

BACKGROUND

- Small bowel imaging challenging
 - inherent anatomic limitations (long, tortuous, variable)
 - because of pathology (low incidence, subtle early chx)
 - technical constraints (large volume, peristalsis)

- Ideal imaging method
 - displays bowel wall (> mucosal layer)
 - sufficient and reliable distention
 - depicts entire tube
 - information of adjacent structures (mesentery, vessels)

Patak M, Mortele KO, Ros PR. MDCT of the small bowel.
Radiol Clin N Am, 2005;43:1063-1077
SB Imaging in IBD

BACKGROUND

- **Endoscopy & capsule endoscopy**
 - detailed mucosal layer only
 - limited reach and contra-indications
- **Small bowel follow through (SBFT)**
 - < information adjacent structures
- **Enteroclysis**
 - invasive
 - detailed mucosal layer only

- **Helical CT**
- **MDCT-enteroclysis**
 - Thiele J. et al. Rofo 1993
 - utilizing nasojejunal intubation
 - methylcellulose or high density agents
- **MDCT-enterography**
 - Raptopoulos V. Am J Roentgenol (AJR) 1997
 - cross-sectional imaging technique optimized to imaging the small bowel including ORAL contrast, IV contrast and high resolution CT imaging
Koenraad Mortele, MD

CT-enteroclysis

CT-enteroclysis

MDCT-Enterography

BRI GHAM & WOMEN’S HOSP ITAL

![Graph showing Nr. CTE from 2003 to 2007](chart.png)
MDCT-Enterography

TECHNIQUE

- Oral contrast agent
 - positive agents
 - neutral agents
 - negative agents
- IV contrast agent
 - non-ionic iodinated contrast
- High resolution CT scan
 - multi-detector capabilities
 - post-processing software

- Oral contrast agent
 - distend lumen to display wall and lumen
 - maximize conspicuity of abnormal wall enhancement
 - minimize side effects
Previous investigators evaluated:
- 12.5% corn oil emulsion
- dilute collagen
- 2% iodine solution
- nonionic solutions
- gastrografin
- whole milk, 2% milk
- methyl cellulose
- iso-osmotic mannitol

significant improvement in GI tract discrimination & mural visualization without significant difference in patient tolerance

High-attenuation (positive) oral contrast:
- conventionally used in abdominal & pelvic CT
- interferes with 2D MPR and 3D rendering
- obscures bowel wall (mucosal enhancement)

Water:
- efficacious neutral contrast agent for evaluation of the upper gastrointestinal tract
- no adequate distention of the distal small bowel

VoLumen®, 0.1% w/v

Olive MR, Erturk SM, Ichikawa T, Rocha T, Ros PR, Silveman SG, Mortele KJ. GI tract wall visualization and distention during abdominal & pelvic MDCT with a neutral barium sulphate suspension: comparison with positive barium sulphate suspension and with water. JBR-BTR. 2012;95(4):257-42
MDCT-Enterography

ORAL CONTRAST

- **VoLumen - Dosing Algorithm**
 - total of 1350cc (3 bottles)
 - 450 cc at 45 minutes prior to scan
 - 450 cc at 30 minutes prior to scan
 - 450 cc at 15 minutes prior to scan

![Image of MDCT scan with contrast](image)
MDCT-Enterography
CROHN’S DISEASE

MDCT-Enterography findings
✓ mural or **mucosal hyperenhancement**
✓ mural thickening
✓ mural stratification
✓ mesenteric fat stranding
✓ “comb sign”
✓ sinus, fistula, abscess
✓ fibrofatty proliferation
✓ submucosal fat replacement

Wold PB et al., Radiology 2003;229:275-281
since all strictures have mucosal hyper-enhancement it is hard to determine the “fixed” nature of the stricture.
Mural attenuation & thickness at MDCT-enterography:
- 96 patients
- Quantitative measures of attenuation correlated significantly with active disease (127HU)
- Wall thickness was not a significant factor after attenuation was taken into account
- Semi-automated software: sensitivity 90%, specificity 69%
- Experienced GI radiologist: sensitivity 80%, specificity 82%

Bodily K, et al. Radiology 2006;238:505-516
MDCT-Enterography

CROHN’S DISEASE

- **CT-enterography performance**

<table>
<thead>
<tr>
<th>TI DISEASE</th>
<th>Extra-luminal DISEASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>sensitivity:</td>
<td>fistulas or abscess</td>
</tr>
<tr>
<td>✓ 78% CT enterography</td>
<td>✓ 10 CT enterography</td>
</tr>
<tr>
<td>✓ 62% SBFT</td>
<td>✓ 5 SBFT</td>
</tr>
<tr>
<td>accuracy</td>
<td></td>
</tr>
<tr>
<td>✓ 80% CT enterography</td>
<td></td>
</tr>
<tr>
<td>✓ 74% SBFT</td>
<td></td>
</tr>
</tbody>
</table>

Boediy K, et al. ABRS 2004

[Image: CT scan examples]
MDCT-Enterography

CROHN’S DISEASE

- MDCT-enterography performance (n=26 pts)

<table>
<thead>
<tr>
<th>ACTIVE TERMINAL ILEUM DISEASE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>sensitivity</td>
<td>40-90%</td>
</tr>
<tr>
<td>specificity</td>
<td>88-100%</td>
</tr>
<tr>
<td>accuracy</td>
<td>69-96%</td>
</tr>
<tr>
<td>negative predictive value</td>
<td>70-94%</td>
</tr>
<tr>
<td>positive predictive value</td>
<td>44-100%</td>
</tr>
</tbody>
</table>

Vandenbroucke F, Mortele IJ et al. Acta Radiol 2007
MDCT-Enterography

SB CROHN’S DISEASE

- **CTE vs CE vs SBFT vs Endoscopy (n=17 pts)**
 - non-obstructive Crohn disease
 - capsule endoscopy most sensitive
 - CT enterography: no false positive findings
 - CTE demonstrated important extra-enteric findings
 - SBFT only depicted CD in 24% of patients
 - The diagnostic algorithm with non-obstructive CD may change to incorporate capsule endoscopy and/or CT enterography rather than small bowel follow through...

 Hara AK, et al. Radiology 2006;238:128-134

Imaging in IBD

FUTURE DIRECTIONS

- **PET/CT-enterography**
 - 18F-fluorodeoxyglucose (FDG)
 - glucose transporters overexpressed in inflamed segments - “Hot Segments”
 - possible impact
 - improved detection of lesions
 - stratification of disease severity
 - therapy monitoring

Imaging in IBD

FUTURE DIRECTIONS

- **Dual source CT-enterography**
 - CT with 2 rows of detectors, dual energy
 - same amount of radiation
 - maximizes “iodine” identification
 - possible impact
 - improved detection of lesions
 - stratification of severity

Small Bowel Imaging
"THE NEWER KID ON THE BLOCK"

- **MR-Enterography**
 - longer exam, more expensive, less availability
 - steeper learning curve, less agreement
 - no significant difference in detection of moderate and marked disease and extraluminal abnormalities
 - motion...

...harder to do a good MRI than a bad CT...

SO WHY MRI ?
Koenraad Mortele, MD

MR-Enterography

WHY MRI?

- **NO RADIATION!!**
 - **young** patients with **numerous** imaging studies over lifetime
 - superior soft tissue contrast: **significant** improved detection of **mild** disease
 - cinematic **“functional”** evaluation
 - peristalsis, inflammatory stenosis, stricture
 - **comprehensive** evaluation perianal region

Low, JMRI 2000 and Schmidt, Eur Radiol 2003
MR-Enterography

BETH ISRAEL DEACONESS MED CTR

TECHNIQUE

- **Oral contrast agent**
 - positive agents
 - negative agents
 - biphasic agents
- **IV contrast agent**
 - gadolinum-chelates
- **Optimized MRI scan**
 - breath-hold sequences
 - thin-section and thick-slab
 - controlled bowel motion

Oral contrast agents

- uniform & homogenous opacification
- adequate distension of the lumen
- high contrast between lumen and bowel wall
- low cost
- absence of significant side effects

MR-Enterography
PULSE SEQUENCES

- **Patient preparation**
 - fluids only 12 hrs & 4 hrs of fasting

- **Patient positioning**
 - **prone** positioning: better distention, decreased imaging volume, separates loops
 - **supine** positioning: greater patient comfort, indicated in patients with stomas, fistulas, pain, and post surgery

WHEN TO PUT PATIENT ON THE TABLE?
- average SB transit time = 45 minutes
- we aren’t all equal !!!
1.5 Tesla (3T shorter bore)
torso coil (minimum 8 channels)
max z-coverage (48 cm): duodenal bulb-symphisis pubis

1 mg IM glucagon

25 minutes scan time

MR-Enterography

PULSE SEQUENCES

- **SS FSE or half-Fourier RARE (COR)**
 - evaluates **distention**, defines **coverage**
 - allows **functional** evaluation (15 images/TP)
 - poor information on mesentery

- **Balanced GRE (AXIAL & CORONAL)**
 - **FIESTA, true FI SP, balanced SSFP**
 - mural and extra-intestinal abnormalities
 - chemical shift artifact detects submucosal fat

MR-Enterography

PULSE SEQUENCES

- **SS FSE FS ASPI R (COR)**
 - mural characterization
- **3-D FS GRE (CORONAL & AXIAL)**
 - LAVA, VI BE, THRI VE, 3D QUI CK
 - 0.2 mmol/kg gadolinium - flow rate 2mL/sec
 - timing formula + 6 seconds: "**enteric phase**"
 - second coronal after 70 sec, axial after 90 sec
 - signal variation reflects tissue microcirculation

Inflammatory Stenoses

Since most strictures have mucosal or mural hyper-enhancement it is hard to determine the activity of the stricture.

Fibrotic Stenosis

Since most strictures have mucosal or mural hyper-enhancement it is hard to determine the activity of the stricture.
MR-Enterography

CROHN’S DISEASE

- **MR-Enterography Indications**
 - Identify presence of Crohn’s disease
 - Sensitivity 88-98%, specificity 78-100%
 - Differentiate from other SB diseases
 - Number, length, locations of involved segments
 - Characterization stenosis
 - Determine severity of inflammatory activity
 - Assess presence of mesenteric changes

MR-Enterography
CROHN'S DISEASE

- Features Chronic Inflammation
 - mural thickening
 - fibrofatty proliferation
 - submucosal fat replacement
 - strictures
 - if inactive: can assess fixed or not
 - if active: could be spasm...
 - inflammatory pseudopolyps
 - sacculations

Wold PB et al., Radiology 2003;229-275-281

Stratification with Fat + Edema = Acute on chronic
MR-colonography: same prep but monitor contrast transit

Imaging in IBD

CONCLUSIONS

- SB imaging in IBD has changed
 - SBFT is pretty much “dead”
 - CT-E is new and accurate technique
 - MR-E is technique of the future/ present?
- What to expect?
 - PET/CT & Dual energy CT enterography
- MRI perianal disease
 - most superior technique
 - expanding applications