Incidental Pancreatic Duct Dilation on Imaging

By
Nadim G. Haddad, M.D.
Associate Professor
Clinical Director
Division of Gastroenterology & Hepatology
MGUH

Disclosures

- Consultant Boston Scientific
Objectives

- Discuss the magnitude of the problem.
- Differential Diagnosis.
- Diagnostic testing.
- Future developments.
- Conclusion.

Differential Diagnosis of Ductal Dilation

- Chronic Pancreatitis.
- Tumor obstructing the main duct.
- IPMN: MPD vs BD vs Mixed.
- Pancreatic Cystic Neoplasm.
- Dilation > 10 mm.
Abnormal MR Pancreatogram
“Ductectatic” Pattern

Chronic Pancreatitis

Side branch ectasia
6mm Pancreatic Adenocarcinoma

Late phase enhancing

Complex cystic mass MCAdenoca
Incidental Pancreatic Cystic Lesion

Pancreas Cysts: An Epidemic?

- 2.4% of all individuals harbor a pancreas cyst by screening MRI
- 20% of clinically indicated abdominal MRI studies demonstrate a cyst in the pancreas
- Prevalence is on the rise due to improved detection with increasingly sophisticated imaging
- 37% of cysts referred for evaluation are discovered incidentally

De Jong et al. Clin Gastro Hep 2010; 8(9) 806-11

ACG Regional Postgraduate Course - Washington, DC
Copyright 2013 American College of Gastroenterology
Pancreas Cysts...What Are They?

- Non-neoplastic cysts
 - Congenital cyst
 - Retention cyst
 - Inclusion cyst
 - Endometriotic cyst
 - Inflammatory cysts
 - Pseudocyst

- Cystic neoplasms
 - Serous Cystadenoma
 - Mucinous Cystadenoma
 - IPMN
 - Lymphangioma
 - Hemangioma
 - Lymphoepithelial cyst

- Solid tumors containing cystic spaces
 - Ductal adenocarcinoma
 - Solid-pseudopapillary neoplasm
 - Cystic endocrine tumor

Pancreatic Cystic Neoplasia

- Benign / Low Risk
 - Serous cystadenoma
 - Lymphoepithelial cyst/Endometriotic cyst
 - Hemangioma/lymphangioma

- Malignant potential / High Risk
 - Mucinous cystadenoma
 - Intraductal papillary mucinous neoplasm
 - Main duct
 - Side branch

- Early identification and intervention can prevent the development of cancer and/or metastasis
Serous Cystadenoma

- 30% of Pancreatic Cysts, Head/Body/Tail.
- Central Calcification in 30%.
- Cuboidal Cells, glycogen-rich (PAS+).
- Highly Vascular.
- Benign.
- Fluid analysis: CEA<5, low amylase.

Mucinous Cystadenoma

- Most common pancreatic cystic neoplasm.
- Female predominance (>75%).
- Mean age of diagnosis = 60’s.
- Macrocystic, often unilocular, eggshell calcification, mural nodule.
- Located in body/tail (90%).
- Do not communicate with the pancreatic duct.
 - Distinguishes from IPMN

Mucinous Cystadenocarcinoma with Liver Mets

Mucinous Cystadenoma

- Columnar mucin producing epithelium
 - Variable degrees of cellular atypia
 - Unique ovarian stroma

WHO Classification
- Benign
- Low-grade malignant
- Malignant
- Other classifications proposed

Reddy et al. Clin Gastro Hep 2(11); 1026-1031
Mucinous Cystadenoma: Fluid aspirate

- CEA
 - Elevated
- Amylase
 - Low
- Viscous fluid
 - String sign
- Cytology
 - Mucin producing epithelium
 - Atypia/dysplasia/carcinoma
- Genetic data
 - High amount of DNA
 - k-ras mutation
 - Loss of heterozygosity

FINAL DIAGNOSIS:

PANCREAS, FINE NEEDLE ASPIRATE WITH QUICK EVALUATION:

FRAGMENTS OF ATYPICAL GLANDULAR CELLS IN A MUCIN PRODUCING EPITHELIUM

IPMN: Clinical Presentation

- Mean age of diagnosis = 60-70's.
- Male predominance.
- Most commonly located in the pancreatic head.
- Clinical presentation
 - Asymptomatic
 - Recurrent pancreatitis
 - Abdominal pain
 - Jaundice
- Commonly initially misdiagnosed as obstructive pancreatitis.
IPMN: Main vs. Branch Duct

Main Duct IPMN
- Arises from the main duct
- Prevalent cancer risk 23-70%
- 10 year risk of progression = 63%
- Tends to be unifocal although may extend along duct

Branch Duct IPMN
- Arises in a side branch
- Prevalent cancer risk 0-36%
- 10 year risk of progression 15%
- Unifocal or multifocal (39-64%)

Tanaka et al. Pancreatology 2006;6;17-32

IPMN: Histology

- Benign
- Borderline
- Carcinoma in situ

Side Branch IPMN: MRCP

- Bile Duct
- MPD
- Cyst

Main Duct IPMN

- Arrow indicating lesion in the main duct.
Focal dilation
Present in 25% of cases, is a diagnostic finding

IPMN: Fluid aspirate

- CEA
 - Elevated
- Amylase
 - High
 - Due to communication with MPD
- Cytology
 - Mucin producing epithelium
 - Atypia/dysplasia/carcinoma
- Viscous fluid
 - String sign
- Genetic data
 - High amount of DNA
 - K-ras and p53 mutations
 - Loss of heterozygosity
Pancreas Cyst Fluid Aspirate
In a perfect world....

<table>
<thead>
<tr>
<th></th>
<th>Amylase</th>
<th>CEA</th>
<th>Cytology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serous Cystadenoma</td>
<td>Low</td>
<td>Low</td>
<td>Cuboidal cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PAS +</td>
</tr>
<tr>
<td>Pseudocyst</td>
<td>High</td>
<td>Low</td>
<td>Debris</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Neutrophils Hemosiderin laden macrophages</td>
</tr>
<tr>
<td>Mucinous Cystadenoma</td>
<td>Low</td>
<td>High</td>
<td>Mucin producing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>columnar epithelium, ovarian stroma</td>
</tr>
<tr>
<td>IPMN</td>
<td>High</td>
<td>High</td>
<td>Mucin producing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>columnar epithelium</td>
</tr>
</tbody>
</table>

Back to reality.....

- FNA is performed through the stomach or duodenal wall
 - Contamination of sample
- Some IPMN (especially branch duct) harbor cells identical to gastric mucosa
- Insufficient fluid for cytology
 - Who wins CEA? Molecular analysis?
- CEA frequently non-diagnostic
 - Mild elevation
 - Elevated in benign processes
 - Absent in pre-malignant/malignant
- CEA cutoff levels vary among laboratories
- 20% of BD IPMN harbor main duct component

Correa-Gallego et al. Pancreatology 2010;10:144-150
CEA: How good is it?

- Cooperative Pancreas Cyst Study
 - Optimal CEA cutoff to maximize AUC = 192
 - Sensitivity 73%
 - Specificity 84%
 - Accuracy 79%
 - Median CEA for non-mucinous lesions = 284
 - Other studies with similar or worse results

Brugge et al. Gastro 2004;126:1330–1336
Khalid et al. Am J Gastro 2006; 101:2493-2500
Park et al. Pancreas. 2010 Oct 13

Limitations of CEA

- Pooled analysis of 450 patients (no IPMN) from 12 studies
 - CEA > 800 48% sensitivity 98% specific for mucinous cystadenoma and cystadenocarcinoma

CEA cutoff = 192 missed 25% (4/12) of malignant mucinous cysts

Cyst Fluid Cytology

- Sensitivity 35%
- Specificity 83%
- Accuracy 59%

Combination Cytology + CEA

- Sensitivity 82%
- Specificity 71%
- Accuracy 77%

Brugge et al. Gastro 2004;126:1330–1336
Khalid et al. GastrointestEndosc 2009; 69(6) 1095-1102
Strategies to Improve Diagnostic Accuracy

- Molecular analysis
- Cyst wall tissue acquisition
 - Brush cytology
 - Cyst wall puncture/biopsy
- Intracystic imaging
 - Confocal endomicroscopy
 - Direct visualization (Spyglass)
- PET scan
 - Sensitivity poor (57%)
- Serial cross sectional imaging and/or EUS FNA

Pancreatic Cyst Fluid DNA Analysis

- Genetic mutations occur early in the process of pancreatic carcinogenesis
- The molecular process of pancreatic carcinogenesis is being increasingly elucidated
 - Similarity in some pathways with heterogeneity in others
Pancreatic Cyst

Integrated analysis of DNA/mutational change.

- DNA QUANTITY
- DNA QUALITY
- KRAS POINT MUTATION (ONCOGENE)
- LOSS OF HETEROZYGOSITY (LOH) MUTATION (TUMOR SUPPRESSOR GENE)

Analysis of free DNA and protein can help assess sampling variation

Final Diagnosis

Pancreas (cyst fluid from body and tail, and head cyst), endoscopic, ultrasound-guided fine needle aspiration, x 2 (specimens “A” and “B”):
- Both samples are basically acellular

<table>
<thead>
<tr>
<th>Pancreatic Cyst Fluid-Body & tail</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amylase</td>
<td>61,948.5</td>
<td>U/L</td>
</tr>
<tr>
<td>CEA</td>
<td>206.3</td>
<td>ng/ml</td>
</tr>
<tr>
<td>Pancreatic Cyst-Head</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amylase</td>
<td>49,368.5</td>
<td>U/L</td>
</tr>
<tr>
<td>CEA</td>
<td>8,718.0</td>
<td>ng/ml</td>
</tr>
</tbody>
</table>

ACG Regional Postgraduate Course - Washington, DC
Copyright 2013 American College of Gastroenterology
Commercially available DNA analysis

- Quantity of DNA - optical density
- Quality of DNA - cycle threshold value
- Degree of allelic imbalance - allelic loss amplitude (ALA), loss of heterozygosity
- k-ras-2 mutation
- Number of mutations
- Sequence of mutations
 - k-ras followed by allelic loss

DIAGNOSTIC CATEGORIES

BENIGN: NON-MUCINOUS & MUCINOUS (LACKS AGGRESSIVE MOLECULAR FEATURES)

STATISTICALLY INDOLENT (SINGLE AGGRESSIVE MOLECULAR FEATURE)

STATISTICALLY INDOLENT SHOWING GREATER RISK FOR NEOPLASTIC PROGRESSION (SINGLE AGGRESSIVE FEATURES WITH CLINICAL CORRELATIVE SUPPORT FOR AGGRESSIVE BIOLOGY)

AGGRESSIVE
Incremental Value of Molecular Analysis for Pancreatic Cyst Management using Endoscopic Ultrasound

- Provides a separate source of multiparameter information to diagnosis and better understand pancreatic cyst biology
- Capable of identifying aggressive disease relatively early in development prior to other clinical evidence
- Assist in the evaluation when conflicting data on biological aggressiveness is present after first line testing
- Possible to plot the trajectory of pancreatic cyst biology through serial integrated molecular/clinical analysis

Performance of Molecular Analysis for Diagnosis of Mucinous Cysts

- Multicenter analysis of 113 patients undergoing EUS FNA for evaluation of pancreas cysts with histologic confirmation
 - 88 mucinous
- Fluid cytology
 - Insufficient in 1/3 of cases
 - Acellular/non-diagnostic in 43%
- CEA @ 192 cutoff for mucinous cysts
 - Sensitivity 64%, Specificity 83%
- CEA @ 192 + k-ras mutation
 - Sensitivity 82%, Specificity 83%
- K-ras alone specificity 96% for mucinous cysts

Khalid et al. GastrintestEndosc 2009; 69(6) 1095-1102
Incremental Value of Molecular Analysis for the Diagnosis of Mucinous Cysts

- Single center of 100 patients with FNA of cysts (0.8-14cm)
 - Quantity not sufficient for CEA = 16%
 - CEA > 192 in 33% of cysts, sensitivity 82%
 - Molecular analysis consistent with mucinous cyst in 49%, sensitivity 77%
 - CEA + molecular, sensitivity 100%, specificity 100%
 - Histology proven cysts

Small Cysts - The real problem

- Single center cyst registry
 - 69% of cysts 3cm or smaller
 - Cytology, CEA, DNA analysis

<table>
<thead>
<tr>
<th></th>
<th>Cytology</th>
<th>CEA</th>
<th>Molecular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsatisfactory</td>
<td>18 (28.6%)</td>
<td>16 (25.4%)</td>
<td>2 (3.2%)</td>
</tr>
<tr>
<td>Benign/serous</td>
<td>17 (27.0%)</td>
<td>31 (49.2%)</td>
<td>14 (22.2%)</td>
</tr>
<tr>
<td>Mucinous</td>
<td>26 (41.3%)</td>
<td>16 (25.4%)</td>
<td>43 (68.3%)</td>
</tr>
<tr>
<td>Malignant</td>
<td>2 (3.2%)</td>
<td>N/A</td>
<td>4 (6.3%)</td>
</tr>
</tbody>
</table>

Sawhney et al. Gastrointest Endosc 2009; 69(6) 1106-10

Incremental Value of Molecular Analysis in Cysts < 3cm

- CEA & Molecular analysis
 - All cases with CEA > 192 had concordant molecular results
 - Includes cytology non-diagnostic but CEA elevated (n=4)
 - 75% confirmed histologically, and concordant
 - K-ras mutations only seen in mucinous cysts

- Additional value of molecular analysis
 - 31% with non diagnostic cytology/CEA obtained a diagnosis based on molecular analysis alone
 - 84% agreed with clinical impression
 - One patient with non-mucinous histology/CEA and aggressive molecular profile had repeat EUS FNA identified adenocarcinoma

Practical considerations of cyst fluid analysis....

- Cyst fluid mismanagement
 - Splitting of samples to more than one location
 - CEA, amylase

- Variability among institutions in determining optimal cutoff

- One test is not the answer, especially for small cysts
 - Clinical + CEA + molecular
 - Enhancing the knowledge base

- Cost
 - CMS approved molecular analysis for patients with pancreatic cysts where “traditional” fluid chemistry and/or cytology evaluations were inconclusive.
Cyst Wall Puncture

- Hypothesis: Puncture of the cyst wall will provide greater cytologic yield than fluid aspirate

- Retrospective review 107 cysts
 - Insufficient fluid for analysis = 30%
 - CWP diagnosis of mucinous cyst 47%
 - Cyst fluid CEA <192
 - CWP diagnosis of mucinous cyst = 31%
 - Overall incremental diagnosis of mucinous cysts based on CWP = 37%

- Complications 2.8%

Incremental Yield of CWP for the Diagnosis of Mucinous Cysts

Mucinous Cysts As Percent of Total

- **Total**
- **QNS**
- **CEA<192**

Without CWP vs **With CWP**

Prospective collection of 39 cysts
- 28% inadequate cyst fluid for cytologic analysis
- 20/39 had findings consistent with non-mucinous cyst (CEA < 192 & Non-mucinous cytology)
 - 40% (8/20) CWP diagnosed mucinous cyst
- 7 cysts with insufficient fluid for cytology/CEA
 - 5/7 mucinous by cyst wall puncture
- Incremental diagnostic yield of CWP = 33%
 - 2 adenocarcinoma
- Pancreatitis n=1

Summary
- Accurate diagnosis of pancreas cysts is paramount to determine appropriate management strategy
- Combination of tests hold promise for the best performance characteristics
 - CEA
 - Molecular DNA analysis
 - Cyst wall puncture
- Further insights into molecular carcinogenesis hold promise for future refinements